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Equivalent Noise Charge: ENC (S/N ratio)

An infinitely narrow probability density function of the detector charge would appear at the output of the analog processing chain as a gaussian distribution with the

variance σ(en, in). This variance can be referred to the input as the equivalent noise charge (ENC), defined as the current that deliv-
ered as an impulse at the preamplifier input will generate at the output a signal of amplitude σ.

Figure 0-1.  

The parameters used are: en = 0.5 nV/ , in = , CTOT = 1nF, RF = 1 kΩ and the filter is CR - RC2.
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Transmission Line Connection: Ideal Lossless Line
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ICARUS CASE: ENC vs. shaping time 
Assume a CR-RC shaping

•en = 0.4 nV/Sqrt[Hz] (slope 2.5e-/pF)

•Rf = 1E6 Ω

•ENC = 500 e - + 2.5 e -/pF at 1 µs shaping time constant
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Other noise sources: Cable Skin Effect losses
Due to the skin effect at high frequency the conduction takes place only near the surface of a conductor, and the current density decays expo-
nentially with depth. The distance at which it is reduced by 1/e is the penetration depth:

The skin effect penetration depth is 66 µm at 1 MHz for copper at 20 oC and 29 µm at 90 K. For a coaxial cable of inner radius a and outer 
radius b the resistance per unit length is:

Calculation of different contributions to the equivalent noise charge. The values assumed are: , CD = 400 pF, R0 = 50 Ω and tp = 20 ns, CR2- RC2 
bipolar shaping. (a): The preamplifier noise contribution only, assuming the line at 300 K (solid line) and 90 K (dashed line) resulting in a different attenuation. (b): is 
the contribution of the noise generated by the distributed resistance of the line (“skin effect noise”) at 300 K (solid line) and 90 K (dashed line). The line skin effect 
resistance is RS = 0.56 Ω at 10 MHz.
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Other Noise Sources: Wire “diffusive line” noise
The equivalent noise resistance of a low noise device with en = 0.4 nV/√Hz is only 10 Ω: any resistor in 
series with the input increases the noise. The stainless steel wire (ρ = 70 µΩ/cm at 20 oC) along with the 
capacitance to ground (i.e. “low impedance” nodes) constitutes an R-C diffusive line:

Noise current and ENC contribution of the wire diffusive line noise in comparison to the series 
and parallel noise. Wire length = 5m.
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Devices: Gallium Arsenide
•High 1/f Noise, especially at room temperature
•Works at cryogenic temperature (better: lower series noise, lower 1/f noise)
•Expensive technology
•Limited availability: longer development time
•Used in the ATLAS Hadronic End-Cap calorimeter (developed by MPI Munich)
•Prototypes developed for ATLAS LAr at INFN Milano 

(D. Camin et al.)

•CONCLUSION:
Probably not suitable for room temperature.
Could work at cryogenic temperature



Si JFET: Temperature Effects:

NJFET DC characteristics vs. temperature. (a): ID vs. VDS characteristics of a monolithic H-type (see text) NJFET transistor (W/
L=11,400/5) at T = 120K (dashed line) and = 300 K (solid line). (b): ID vs. VDS characteristics at T = 50 K for a W/L = 2500/5 mono-
lithic NJFET.

Temperature effects on the pinch-off voltage VT and maximum current IDSS (a) and on gm (b) down to the freeze-out region. The mea-
surement has been performed on a W/L=2500/5 device.
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Si JFET: Noise vs. Temperature

Noise characteristics vs. temperature. (a): Series noise voltage density at 300 K, 120 K and 90 K for an unirradiated monolithic 
H-type NJFET (W/L = 2800/5). The transistor has been measured in the saturation region with VDS = 2.5 V and ID = 1 mA. (b): 
Temperature dependence for the high frequency component (white noise) of the series noise voltage density of a preamplifier 
whose input device is a monolithic H-type NJFET (W/L = 11400/5). The en values have been obtained from equivalent noise 
charge measurements. The input transistor was operating in the saturation region with a standing current ID = 4 mA at room tem-
perature.
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JFET Monolithic Preamplifier

SPICE plot of the forward gain of the IPA3 preamplifier at various nodes. The input-output gain is the one measured on the 
source of J8.

-6 V

REXT

CF =27 pF

CD
500 P

V1

3.3 kΩ

33 Ω

800 µm

400 µm

1700 µm

11400 µm

3500 µm

400 µm

400 µm

3500 µm

500 Ω

3.3 kΩ

2 kΩ

+12 V

OUT

J1

J2

J3

J4

J5

J6

J7

J8

IN

RF = 10 kΩ

R3

R2

R1

Vo
lts

 M
ag

 (l
og

)

0.1

1

10

100

1k

10k

Frequency (log) (HERTZ)
100 1k 10k 100k 1M 10M 100M 1G

S-J8

S-J5

S-J3



Experimental Characterization
IPA3 measured characteristics

Parameter L-type H-type

Input Device NJFET, 
W = 11400 µm, L = 5 µm

Open-loop input capacitance 50 pF 40 pF

Power dissipation 80 mW

DC gain A0 ZOUT = 10 kΩ 82 dB 75 dB

ZOUT = 100 Ω 76 dB 70 dB

Rise time (CD = 500 p, CF = 33 pF) 15 ns

Noise voltage /√Hz]
(f > 1 kHz)

T= 300 K  0.6 0.7

T = 120 K 0.4 0.4

Equivalent noise charge [e rms]
(RC)2 -(CR)2 bipolar shaping at tp = 50 ns ENC= 1200+ 18CD ENC =1100+ 21CD

ENC as a function of temperature for IPA3 L and H preamplifiers.The measurements have been carried out with 
CD = 500 pF detector capacitance and bipolar shaping obtained from an (RC)2 -(CR)2 filter. 
a): 50 ns peaking time; b): 20 ns peaking time.
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DEVICES: Silicon JFET: Monolithic JFET Process   

Cross section of adjacent devices built by means of the buried layer process.

Simplified Fabrication Process (Buried Layer, Diffused S, D, G Process)

1 Starting wafer: 0.5 Ωcm, N-type, (111) Silicon 

2 Diffuse back-gate wells: 0.002 Ωcm

3 Grow oxide: tox ~ 50 nm 

4 Strip oxide, chemical clean and epi-growth.
tepi ~ 5-7 µm 

Repi = 0.5 Ωcm (L-type) and 1.5 Ωcm (H-type)

5 Pattern and diffuse isolation ring (P-type)

6 Pattern gate and gate diffusion (P-type)

7 Pattern source and drain and diffusion (N-type) 

8 Open contact window. Probe test structures.
Gate targeting (by additional drive-in)

9 Nitride deposition (dielectric layer to isolate metal)

10 Evaporate and pattern metal (aluminum)

11 Nitride protective overcoat

N-substrateP-buried layer

Drain

P-buried layer

Source

Top Gate Top Gate
Drain

Source

N-epitaxial channel N-epitaxial channel



Devices: Bipolar Transistors

• The Ib = 12.5 µA, corresponding to Rpar = 4000 Ω.
The noise corner time constant is 

• In short: forget it.

• Even using SiGe (β = 500-1000 at cryogenic temperature) is unfeasible
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Devices: CMOS
PMOS TMSC 0.25 µm Technology

L = 0.36 µm W = optimized for minimum noise at a given power (PMOS, L=0.36µm, W=42mm, Cg=91pF, gm=153mS @ 20mW)

Cd = 500 pF t = 1 µs

\

Needs Id = 10 mA (P = 20mW) to reach ENC < 1000 e at 1 µs

From G. De Geronomo
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Devices: CMOS
PMOS TMSC 0.25 µm Technology

L = 0.36 µm W = optimized for minimum noise at a given power

Cd = 500 pF t = 1 µs

       Needs Id = 10 mA (P = 20mW) to reach ENC < 1000 e at 1 µs          P = 20 mW Cd = 500 pF vs. measurement time

(From G. De Geronimo)

Reference: “MOSFET Optimization in Deep Submicron Technology for Charge Amplifiers”,  G. De Geronimo, P. O’Connor, presented at the “2004 IEEE 
Nuclear Science Symposium”, Rome
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Cryogenic vs. “Warm” Electronics
• Cable capacitance ~50pF/m ⇒ 200 pF for 4 m cable run (500 pF for 10 m)

• Cd ~ 500 pF  ⇒ 700 pF total  capacitance contributing to the noise  (1000 pF for 10 m)
CRYOGENIC ELECTRONICS REDUCES THE NOISE 

OTHER ADVANTAGES:
• Avoids transmission of very low level signals (better “Faraday cage”)

• at the cost of complicating the electronics (MORE POWER!), could reduce the number of feedthrough by data reduc-
tion (“sparsification”)  in  hardware

• reliability (if properly designed and built)
DISADVANTAGES

• Bubbling

• cryogenic load

• Purity
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